Blessing, R. H. (1995). Acta Cryst. A51, 33-38.
Burrows, A. D., Mingos, D. M. P., Lawrence, S. E., White, A. J. P. \& Williams, D. J. (1997). J. Chem. Soc. Dalton Trans. pp. 1295-1300.
Cairns, M. A., Dixon, K. R. \& Smith, M. A. R. (1977). J. Organomet. Chem. 135, C33-34.
Dinger, M. B. \& Henderson, W. (1998). J. Organomet. Chem. 560, 233-243, and references therein.
Henderson, W., Nicholson, B. K. \& Oliver, A. G. (1994). J. Chem. Soc. Dalton Trans. pp. 1831-1835.
Porta, F., Ragaini, F., Cenini, S. \& De Martin, F. (1990). Organometallics, 9, 929-935.
Pracejus, H., Oeheme, G. \& Röber, K.-C. (1976). J. Organomet. Chem. 105, 127-138.
Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994a). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Siemens (1994b). SHELXTL. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Spek, A. L. (1998). PLATON98. University of Utrecht, The Netherlands.

Acta Cryst. (1999). C55, 1408-1410

cis-Bis(phenoxyacetato- O)bis(triphenyl-phosphine-P)platinum(II) dichloromethane solvate

William Henderson and Allen G. Oliver
Chemistry Department, University of Waikato, Private Bag 3105, Hamilton, New Zealand. E-mail: w.henderson@waikato.ac.nz

(Received 25 January 1999; accepted 3 June 1999)

Abstract

The title complex, $\left[\mathrm{Pt}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, has carboxylate ligands bonded in a monodentate manner.

Comment

We have been investigating silver(I) oxide-mediated reactions of carboxylic acids with platinum group metal halide complexes as a route to four-membered-ring metallalactone complexes of type $L_{2} M\{\mathrm{CH} R \mathrm{C}(\mathrm{O}) \mathrm{O}\}$. The product is dependent on the nature of the carboxylic acid; $\mathrm{PhSO}_{2} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$ gives the platinalactone complex $\left[\mathrm{Pt}\left\{\mathrm{CH}\left(\mathrm{SO}_{2} \mathrm{Ph}\right) \mathrm{C}(\mathrm{O}) \mathrm{O}\right\}\left(\mathrm{PPh}_{3}\right)_{2}\right]$, whereas $\mathrm{NCCH}_{2}-$ $\mathrm{CO}_{2} \mathrm{H}$ gives the bis(cyanomethyl) complex cis- $\left[\mathrm{Pt}\left(\mathrm{CH}_{2}-\right.\right.$ $\mathrm{CN})_{2}\left(\mathrm{PPh}_{3}\right)_{2}$], which has been characterized by X-ray crystallography (Henderson \& Oliver, 1999). This paper describes the structure of the product formed in the
case of phenoxyacetic acid, i.e. cis- $\left[\mathrm{Pt}\left(\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{OPh}\right)_{2}-\right.$ $\left.\left(\mathrm{PPh}_{3}\right)_{2}\right] \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$, (I).

$\mathrm{CH}_{2} \mathrm{Cl}_{2}$
(I)

Carboxylate ligands predominantly adopt a chelating or a bridging mode (Oldham, 1987), and when two carboxylate ligands are in a cis conformation, they tend to be of the latter type, often bridging several metal centres. Tan et al. (1996) isolated and characterized several short-chain platinum(II) carboxylic acid derivatives, which adopted a monodentate bonding mode. The title complex also demonstrates this monodentate bonding mode. One notable difference between the previously reported crystal structures of cis-carboxylatoplatinum(II) complexes and that presented here is the ancillary ligands. In the reported crystal structures of the complexes cis- $\left[\mathrm{Pt}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2} L_{2}\right]\left[R=\mathrm{Me}\right.$ or $\mathrm{Ph}, L_{2}=\mathrm{Fe}\left(\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{PPh}_{2}\right)_{2}$ (dppf); $R=\mathrm{CF}_{3}, L_{2}=\mathrm{Ph}_{2} \mathrm{PCH}_{2} \mathrm{PPH}_{2}$ (dppm)], chelating phosphines were employed, forcing a cis arrangement of the acetate ligands (Tan et al., 1996).
The coordination around the platinum centre of cis$\left[\mathrm{Pt}\left(\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{OPh}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ is a distorted square plane as a result of the steric bulk of the triphenylphosphine and phenoxyacetate ligands. Thus, the $\mathrm{Pl}-\mathrm{Pt}-\mathrm{P} 2$ angle [$98.00(6)^{\circ}$] is more obtuse than the $\mathrm{O} 1-\mathrm{Pt}-\mathrm{P} 1$ angle [$\left.85.54(15)^{\circ}\right]$. The remaining two bond angles are closer to ideal [$\mathrm{O} 11-\mathrm{Pt}-\mathrm{Ol} 87.75$ (19) and $\mathrm{Ol1-Pt-P2}$ $\left.89.93(14)^{\circ}\right]$. The phenoxyacetate ligands are distorted out of the plane around the Pt atom. The O 1 atom lies 0.433 (6) \AA above the plane defined by atoms $\mathrm{P} 1, \mathrm{P} 2$ and Pt , while O 11 is 0.178 (5) \AA below this plane. This distortion is also reflected in the bond angles of the atoms trans to the O atoms [167.53(16) and $170.64(14)^{\circ}$ for $\mathrm{O} 1-\mathrm{Pt}-\mathrm{P} 2$ and $\mathrm{O} 11-\mathrm{Pt}-\mathrm{Pl}$, respectively] with respect to an ideal value of 180°. The $\mathrm{Pt}-\mathrm{O}$ bond lengths [2.082 (5) and 2.056 (4) \AA for $\mathrm{Pt}-$ O 1 and Pt -O11, respectively] are within the ranges of the platinum(II) carboxylate complexes described previously, i.e. cis- $\left[\mathrm{Pt}\left(\mathrm{O}_{2} \mathrm{CR}\right)_{2} L_{2}\right]\left[R=\mathrm{Me}\right.$ or $\mathrm{Ph}, L_{2}=$ $\mathrm{dppf} ; R=\mathrm{CF}_{3}, L_{2}=\mathrm{dppm} ; 2.034$ (6)-2.089 (6) \AA A ; Tan et al., 1996]. The $\mathrm{Pt}-\mathrm{P}$ bond lengths are not unusual.

The geometry of the carboxylate ligands with respect to one another is an anti arrangement of the carbonyl ligands [O2- $\mathrm{Cl}-\mathrm{Cl1}-\mathrm{O} 12177.9(6)^{\circ}$]. This geometry has been observed in the other reported cis-acetatoplatinum(II) complexes (Tan et al., 1996). The O1-C1 bond distance is 1.177 (9) \AA, fractionally shorter than that of $\mathrm{O} 2-\mathrm{C} 1[1.225$ (9) \AA], where O 1 is the oxygen coordinated to the platinum. The other coordinating oxygen (OI1) shows more single-bond charac-
ter, with an $\mathrm{O}-\mathrm{C}$ distance of 1.285 (8) \AA, and is comparable to previously reported bond lengths [1.257 (8)1.298 (5) Å; Tan et al., 1996].

Fig. 1. The molecular structure of (I) showing 50% probability displacement ellipsoids. The solvate of crystallization and the H atoms have been omitted for clarity.

Experimental

$\left[\mathrm{Pt}\left(\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{OPh}\right)_{2}(\mathrm{COD})\right]$ (COD is 1,5-cyclooctadiene) was synthesized by refluxing a mixture of $\left[\mathrm{PtCl}_{2}\right.$ (COD)] $(0.097 \mathrm{~g}$, 0.258 mmol), phenoxyacetic acid ($0.081 \mathrm{~g}, 0.503 \mathrm{mmol}$) and silver(I) oxide $(0.233 \mathrm{~g}$, excess) in dichloromethane (20 ml) for 3 h . Silver salts were removed by filtration affording a deep-brown solution. The solvent was removed under vacuum and petroleum spirit was added producing a tan precipitate $(0.065 \mathrm{~g}, 55 \%)$. cis- $\left[\mathrm{Pt}\left(\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{OPh}\right)_{2}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ was prepared by ligand displacement of COD from $\left[\mathrm{Pt}\left(\mathrm{O}_{2} \mathrm{CCH}_{2} \mathrm{OPh}\right)_{2}-\right.$ (COD)] ($0.045 \mathrm{~g}, 0.117 \mathrm{mmol}$) by triphenylphosphine $(0.065 \mathrm{~g}$, 0.247 mmol) in dichloromethane. Recrystallization by vapour diffusion of diethyl ether into a dichloromethane solution gave colourless tablets of an acceptable size. ${ }^{31} \mathrm{P}$ NMR: $\delta 15.48$ $\left({ }^{1} J_{\mathrm{P}_{\mathrm{t}}-\mathrm{P}}=4084 \mathrm{~Hz}\right) ;{ }^{1} \mathrm{H}$ NMR: $\delta 7.7-6.6(\mathrm{~m}, \mathrm{Ph}), 1.65(s$, CH_{2}).

Crystal data

```
\(\left[\mathrm{Pt}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]-\quad\) Mo \(K \alpha\) radiation
    \(\mathrm{CH}_{2} \mathrm{Cl}_{2}\)
\(\boldsymbol{M}_{r}=1106.83\)
Monoclinic
\(P 2_{1} / c\)
\(a=11.4782(1) \AA\)
\(b=17.9393\) (3) \(\AA\)
\(c=23.3995(2) \AA\)
\(\beta=101.006(1)^{\circ}\)
\(V=4729.59(10) \AA^{3}\)
\(Z=4\)
\(D_{x}=1.554 \mathrm{Mg} \mathrm{m}^{-3}\)
\(D_{m}\) not measured
```

$\left[\mathrm{Pt}\left(\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{O}_{3}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{P}\right)_{2}\right]-$	Mo $K \alpha$ radiation $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $M_{r}=1106.83$
Monoclinic	$\lambda=0.71073 \AA$
$P 2_{1} / c$	Cell parameters from 5533
$a=11.4782(1) \AA$	\quad reflections
$b=17.9393(3) \AA$	$\mu=1.44-26.45^{\circ}$
$c=23.3995(2) \AA$	$T=203(2) \mathrm{m}$
$\beta=101.006(1)^{\circ}$	Tablet
$V=4729.59(10) \AA^{\circ}$	$0.25 \times 0.23 \times 0.08 \mathrm{~mm}$
$Z=4$	Colourless
$D_{x}=1.554 \mathrm{Mg} \mathrm{m}^{-3}$	
D_{m} not measured	

Data collection
Siemens SMART CCD
diffractometer
Multi-scan
Absorption correction:
empirical (Blessing, 1995)
$T_{\text {min }}=0.671, T_{\text {max }}=0.815$
26767 measured reflections
8799 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.048$
$w R\left(F^{2}\right)=0.119$
$S=1.065$
8799 reflections
562 parameters
H atoms constrained
$w^{\prime}=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0463 P)^{2}\right.$
$+21.2066 P]$
where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$

6623 reflections with

$$
I>2 \sigma(I)
$$

$R_{\text {int }}=0.045$
$\theta_{\text {max }}=26.45^{\circ}$
$h=-14 \rightarrow 14$
$k=0 \rightarrow 22$
$l=0 \rightarrow 22$
Intensity decay: none

Table 1. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$

P -O11	2.056 (4)	$\mathrm{Ol}-\mathrm{Cl}$	1.177 (9)
$\mathrm{Pl}-\mathrm{Ol}$	2.082 (5)	O2-Cl	1.225 (9)
Pt -P2	2.2305 (17)	O)3-C3	1.369(11)
$\mathrm{Pl}-\mathrm{Pl}$	2.2501 (18)	O)3-C2	1.396 (10)
$\mathrm{Pl}-\mathrm{C} 31$	1.812 (7)	O11-C11	1.285 (8)
$\mathrm{Pl}-\mathrm{C} 41$	1.829 (7)	O12-C11	1.234 (9)
$\mathrm{Pl}-\mathrm{C} 21$	1.830 (7)	(1)3-C13	1.385 (9)
P2-C61	1.820 (7)	O13-C12	1.414 (8)
P2-C71	1.825 (7)	$\mathrm{C} 1-\mathrm{C} 2$	1.597 (11)
P2-C51	1.833 (6)	CH-Cl2	$1.510(10)$
$\mathrm{Oll}-\mathrm{Pl}-\mathrm{Ol}$	87.75 (19)	$\mathrm{OI}-\mathrm{Cl}-\mathrm{C} 2$	109.8 (6)
O11-P1-P2	89.93 (14)	$\mathrm{O} 2-\mathrm{Cl}-\mathrm{C} 2$	115.9 (8)
O1-Pl-P2	167.53 (16)	O3-C2-Cl	116.0 (7)
O11-Pl-P1	170.64 (14)	O3-C3-C8	124.7 (9)
$\mathrm{Ol}-\mathrm{Pt}-\mathrm{Pl}$	85.54 (15)	O3-C3-C4	115.0 (10)
$\mathrm{P} 2-\mathrm{Pl}-\mathrm{Pl}$	98.00 (6)	O12--C11-()11	125.3 (7)
$\mathrm{Cl}-\mathrm{Ol}-\mathrm{Pl}$	124.6 (6)	O12-Cl1-Cl2	121.9(7)
$\mathrm{C} 3-\mathrm{O} 3-\mathrm{C} 2$	$117.2(7)$	()11-Cll-Cl2	112.7 (7)
C11-O11--Pi	118.5 (4)	O13-C12-C11	114.5 (6)
C13-O13-C12	116.7 (6)	C18--C13-O13	124.4 (7)
$\mathrm{Ol}-\mathrm{Cl}-\mathrm{O} 2$	134.3 (9)	C14-C13-O13	115.2(7)

H atoms were included in idealized positions riding on the atom to which they were bonded, with displacement parameters fixed at 1.2 times that of the parent atom. The maximum residual peak is $0.86 \AA$ from the Pt atom and the minimum residual peak is $0.67 \AA$ from the $\mathrm{Cl1}$ atom.

Data collection: SMART (Siemens, 1994a). Cell refinement: SAINT (Siemens, 1994a). Data reduction: SAINT. Program(s) used to solve structure: SHELXS97 (Sheldrick, 1997a). Program(s) used to refine structure: SHELXL97 (Sheldrick, 1997b). Molecular graphics: SHELXTL (Siemens, 1994b). Software used to prepare material for publication: SHELXL97.

We would like to thank the University of Auckland Crystallography Unit for data collection, the New Zealand Lottery Grants Board for financial support, and Professor B. K. Nicholson and Associate Professor C. E. F. Rickard for helpful discussions.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: TA1245). Services for accessing these data are described at the back of the journal.

References

Blessing, R. H. (1995). Acta Crvst. A51, 33-38.
Henderson, W. \& Oliver, A. G. (1999). Acta Cryst. C55, 1406-1408.
Oldham, C. (1987). Comprehensive Coordination Chemistry, Vol. 2. edited by G. Wilkinson, R. D. Gillard \& J. A. McCleverty, ch. 15.6. p. 435. Oxford: Pergamon.

Sheldrick, G. M. (1997a). SHELXS97. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1997b). SHELXL97. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Siemens (1994a). SMART and SAINT. Area Detector Control and Integration Software. Siemens Analytical X-ray Instruments Inc.. Madison, Wisconsin, USA.
Siemens (1994b). SHELXTL. Release 5.03. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tan, A. L., Low, P. M. N., Zhou, Z.-Y., Zheng, W., Wu, B.-M., Mak. T. C. W. \& Hor, T. S. A. (1996). J. Chem. Soc. Dalton Trans. pp. 2207-2214.

Acta Cryst. (1999). C55, 1410-1411

Bis[1-hydroxy-3-methylpyridine-2(1H)-thionato- $O, S]$ nickel(II)

S. Shanmuga Sundara Rad, ${ }^{\text {a }}$ Hoong-Kun Fun, ${ }^{\text {a }}$ De-Zhong Niu, ${ }^{b}$ Zai-Sheng Lu, ${ }^{b}$ Bai-Wang Sun, ${ }^{b}$ Bao-Lin Song ${ }^{b}$ and Xiao-Zeng You ${ }^{c}$
${ }^{a} X$-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia,
${ }^{b}$ Deparatment of Chemistry, Xuzhou Normal Universiț; Xuzhou 221009, People's Republic of China, and ${ }^{\text {'Coordination Chemistry Institute, State Key Laboratory }}$ of Coordination Chemistry, Nanjing University: Nanjing 210093, People's Republic of China. E-mail: hkfun@usm.my
(Received 4 May 1999: accepted 19 May 1999)

Abstract

In the structure of the title compound, $\left[\mathrm{Ni}\left(\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{NOS}\right)_{2}\right]$, the Ni atom is coordinated by a slightly distorted planar array of two S and two O atoms. The two 1 -hydroxy-3-methylpyridine-2 $(1 \mathrm{H})$-thione (3-Me-HPT) ligands adopt a cis configuration. The average $\mathrm{Ni}-\mathrm{O}$ and $\mathrm{Ni}-\mathrm{S}$ bond lengths are 1.868 (2) and 2.130 (1) \AA, respectively.

Comment

Owing to their useful bactericidal and antifungal activities, transition metal complexes of 1-hydroxypyridine$2(1 \mathrm{H})$-thione (HPT) have been widely investigated. Moreover, HPT exhibits unusual versatility in coordi-
nating to metals (Barnett et al., 1977; West et al., 1988). On the other hand, the simulation of many metalloenzymes involving the thiolate group has also received considerable attention, particularly the assessment of the antitumor activity of some nickel complexes with chelating ligands (West et al., 1993). As part of our studies of metal complexes of HPT (Xiong et al., 1996; Song et al., 1996), we now report the crystal structure of bis[1-hydroxy-3-methylpyridine-2(1 H)-thionato$O, S]$ nickel(II), (I).

The complex is formed with cis-oriented 1-hydroxy3 -methylpyridine-2 $(1 H$)-thione ($3-\mathrm{Me}-\mathrm{HPT}$) ligands and shows nearly planar geometry. The Ni atom is coordinated by the S and O atoms of the two ligands and has a distorted square-planar geometry. The whole molecule exhibits a pseudo- $C_{2 \mathrm{r}}$ symmetry, with the C_{2} axis passing through the Ni atom and the midpoints of $\mathrm{S} 1-\mathrm{S} 2$ and $\mathrm{Ol}-\mathrm{O} 2$. When comparing the title compound with the analogue $\left[\mathrm{Ni}(\mathrm{PT})_{2}\right]$ (Chen et al., 1991), the $\mathrm{Ni}-\mathrm{S}$ and $\mathrm{Ni}-\mathrm{O}$ bond distances in the two complexes are essentially the same within experimental error. However, the $\mathrm{C}-\mathrm{S}$ bond lengths in (I) [average 1.728 (3) A J are significant longer than those in the latter (average $1.710 \AA$) and the N-O bond lengths [average 1.320 (4) \AA] are somewhat shorter than those in the latter (average $1.350 \AA$), which may be the result of steric hindrance of the 3 -methyl group. The two O-$\mathrm{Ni}-\mathrm{S}$ bite angles are nearly equal and close to 90°, as is found in $\left[\mathrm{Ni}(\mathrm{PT})_{2}\right]$, where PT is pyridine-2-thione. In the title complex, the two five-membered chelate rings are nearly planar, with maximum deviations of 0.024 (4) \AA for Cl and 0.021 (4) \AA for C 11 . The dihedral angle between these two planes is $5.3(1)^{\circ}$. The complete molecule is almost planar. The Ni atom deviates by 0.002 (1) \AA from the basal plane formed by the

Fig. 1. A displacement ellipsoid plot (50\% probability level) of the title molecule showing the atom-numbering scheme.

